python語法簡單,上手易,能夠快速搭建后臺。go性能強大,上手時間比python略長,為web而生。既然是小型站,不妨先用python。推薦tornado框架
1、魚竿桿節(jié)開裂只能更換一根魚竿,沒有更好的解決方法,但是我們可以做到避免這種事情的發(fā)生。
2、魚竿桿節(jié)開裂最主要的原因是沒有明確水下情況便貿(mào)然大力提竿(提竿過猛),導(dǎo)致斷節(jié)。
3、避免方法:提竿分抖竿刺魚和提竿出水兩個動作,抖竿短促有力,提竿動作輕柔,中魚后不要猛拉,防止水下是巨物或者掛底的情況
后端開發(fā),也可以稱為服務(wù)器端開發(fā),是對用戶看不到的程序后端部分的開發(fā),負責處理前端的請求,進行邏輯處理和數(shù)據(jù)交互,會用到應(yīng)用構(gòu)建的服務(wù)器端語言、數(shù)據(jù)相關(guān)工具、版本控制工具以及作為開發(fā)部署環(huán)境的Linux系統(tǒng)等工具。
后端開發(fā)需要考慮底層業(yè)務(wù)邏輯的實現(xiàn)、數(shù)據(jù)的保存與讀取、平臺的穩(wěn)定性和性能等。
如果是vue前端項目的話,在項目vue.config文件中有關(guān)于后端項目地址的配置代碼,可以在該文件中修改后端項目端口和項目IP。后端項目可以在配置中修改端口。如果不清楚的話可以將項目運行起來后,在瀏覽器中打開localhost:端口號+可用路徑(默認為空),可以用這種方式測試
答:造成后輪剎車失靈的原因很多。
一是對剎車系統(tǒng)缺乏必要的保養(yǎng),剎車總泵里雜質(zhì)太多、密封不嚴、真空助力泵失效、剎車油過臟或幾種剎車油混合使用受熱后出現(xiàn)氣阻、剎車總泵或分泵漏油、儲氣罐或管路接口漏氣;
二是由于操作不當導(dǎo)致機件失靈,如長時間下坡會使剎車片摩擦生熱、剎車轂炭化、剎車功能完全失效;
三是由于嚴重超載,在重力加速度的作用下,加大了車輛運動慣性,直接導(dǎo)致剎車失靈
后端語言的排行榜是由其應(yīng)用范圍、性能、可維護性、社區(qū)支持等多方面因素綜合決定的。目前,排名靠前的后端語言包括Java、Python、PHP、Ruby、Node.js等。
Java在企業(yè)級應(yīng)用方面表現(xiàn)突出,Python在科學計算和數(shù)據(jù)處理領(lǐng)域具有優(yōu)勢,PHP是Web開發(fā)的主要選擇,Ruby被廣泛應(yīng)用于Web框架和游戲開發(fā),Node.js則是基于JavaScript的服務(wù)器端開發(fā)框架,適用于實時應(yīng)用和高吞吐量的場景。不同的應(yīng)用場景需要不同的后端語言來支持,因此選擇后端語言時要根據(jù)具體需求進行選擇。
作為一名前端開發(fā)工程師,客觀地來說,前端轉(zhuǎn)后端難度更大。理由如下:第一,從招聘要求來看,雖然兩者所用技術(shù)棧不同,但是總得來說,前端的綜合要求比后端要低,這也就意味著前端開發(fā)人員比后端開發(fā)人員更易培養(yǎng);第二,從招聘薪資來看,市面上后端開發(fā)的薪資一般都高于前端,這也就意味著后端往往比前端更有市場價值,而市場價值取決于培養(yǎng)一個合格的前后端開發(fā)工程師所需要耗費的時間和精力;第三,從從事的人群來看,從事后端開發(fā)的科班人數(shù)要多于前端開發(fā)。
此外,在互聯(lián)網(wǎng)行業(yè)也有著算法優(yōu)于后端,后端優(yōu)于前端,前端優(yōu)于測試的說法
之前看了Mahout官方示例 20news 的調(diào)用實現(xiàn);于是想根據(jù)示例的流程實現(xiàn)其他例子。網(wǎng)上看到了一個關(guān)于天氣適不適合打羽毛球的例子。
訓(xùn)練數(shù)據(jù):
Day Outlook Temperature Humidity Wind PlayTennis
D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal Strong No
D7 Overcast Cool Normal Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes
D10 Rain Mild Normal Weak Yes
D11 Sunny Mild Normal Strong Yes
D12 Overcast Mild High Strong Yes
D13 Overcast Hot Normal Weak Yes
D14 Rain Mild High Strong No
檢測數(shù)據(jù):
sunny,hot,high,weak
結(jié)果:
Yes=》 0.007039
No=》 0.027418
于是使用Java代碼調(diào)用Mahout的工具類實現(xiàn)分類。
基本思想:
1. 構(gòu)造分類數(shù)據(jù)。
2. 使用Mahout工具類進行訓(xùn)練,得到訓(xùn)練模型。
3。將要檢測數(shù)據(jù)轉(zhuǎn)換成vector數(shù)據(jù)。
4. 分類器對vector數(shù)據(jù)進行分類。
接下來貼下我的代碼實現(xiàn)=》
1. 構(gòu)造分類數(shù)據(jù):
在hdfs主要創(chuàng)建一個文件夾路徑 /zhoujainfeng/playtennis/input 并將分類文件夾 no 和 yes 的數(shù)據(jù)傳到hdfs上面。
數(shù)據(jù)文件格式,如D1文件內(nèi)容: Sunny Hot High Weak
2. 使用Mahout工具類進行訓(xùn)練,得到訓(xùn)練模型。
3。將要檢測數(shù)據(jù)轉(zhuǎn)換成vector數(shù)據(jù)。
4. 分類器對vector數(shù)據(jù)進行分類。
這三步,代碼我就一次全貼出來;主要是兩個類 PlayTennis1 和 BayesCheckData = =》
package myTesting.bayes;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.util.ToolRunner;
import org.apache.mahout.classifier.naivebayes.training.TrainNaiveBayesJob;
import org.apache.mahout.text.SequenceFilesFromDirectory;
import org.apache.mahout.vectorizer.SparseVectorsFromSequenceFiles;
public class PlayTennis1 {
private static final String WORK_DIR = "hdfs://192.168.9.72:9000/zhoujianfeng/playtennis";
/*
* 測試代碼
*/
public static void main(String[] args) {
//將訓(xùn)練數(shù)據(jù)轉(zhuǎn)換成 vector數(shù)據(jù)
makeTrainVector();
//產(chǎn)生訓(xùn)練模型
makeModel(false);
//測試檢測數(shù)據(jù)
BayesCheckData.printResult();
}
public static void makeCheckVector(){
//將測試數(shù)據(jù)轉(zhuǎn)換成序列化文件
try {
Configuration conf = new Configuration();
conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));
String input = WORK_DIR+Path.SEPARATOR+"testinput";
String output = WORK_DIR+Path.SEPARATOR+"tennis-test-seq";
Path in = new Path(input);
Path out = new Path(output);
FileSystem fs = FileSystem.get(conf);
if(fs.exists(in)){
if(fs.exists(out)){
//boolean參數(shù)是,是否遞歸刪除的意思
fs.delete(out, true);
}
SequenceFilesFromDirectory sffd = new SequenceFilesFromDirectory();
String[] params = new String[]{"-i",input,"-o",output,"-ow"};
ToolRunner.run(sffd, params);
}
} catch (Exception e) {
// TODO Auto-generated catch block
e.printStackTrace();
System.out.println("文件序列化失??!");
System.exit(1);
}
//將序列化文件轉(zhuǎn)換成向量文件
try {
Configuration conf = new Configuration();
conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));
String input = WORK_DIR+Path.SEPARATOR+"tennis-test-seq";
String output = WORK_DIR+Path.SEPARATOR+"tennis-test-vectors";
Path in = new Path(input);
Path out = new Path(output);
FileSystem fs = FileSystem.get(conf);
if(fs.exists(in)){
if(fs.exists(out)){
//boolean參數(shù)是,是否遞歸刪除的意思
fs.delete(out, true);
}
SparseVectorsFromSequenceFiles svfsf = new SparseVectorsFromSequenceFiles();
String[] params = new String[]{"-i",input,"-o",output,"-lnorm","-nv","-wt","tfidf"};
ToolRunner.run(svfsf, params);
}
} catch (Exception e) {
// TODO Auto-generated catch block
e.printStackTrace();
System.out.println("序列化文件轉(zhuǎn)換成向量失??!");
System.out.println(2);
}
}
public static void makeTrainVector(){
//將測試數(shù)據(jù)轉(zhuǎn)換成序列化文件
try {
Configuration conf = new Configuration();
conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));
String input = WORK_DIR+Path.SEPARATOR+"input";
String output = WORK_DIR+Path.SEPARATOR+"tennis-seq";
Path in = new Path(input);
Path out = new Path(output);
FileSystem fs = FileSystem.get(conf);
if(fs.exists(in)){
if(fs.exists(out)){
//boolean參數(shù)是,是否遞歸刪除的意思
fs.delete(out, true);
}
SequenceFilesFromDirectory sffd = new SequenceFilesFromDirectory();
String[] params = new String[]{"-i",input,"-o",output,"-ow"};
ToolRunner.run(sffd, params);
}
} catch (Exception e) {
// TODO Auto-generated catch block
e.printStackTrace();
System.out.println("文件序列化失??!");
System.exit(1);
}
//將序列化文件轉(zhuǎn)換成向量文件
try {
Configuration conf = new Configuration();
conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));
String input = WORK_DIR+Path.SEPARATOR+"tennis-seq";
String output = WORK_DIR+Path.SEPARATOR+"tennis-vectors";
Path in = new Path(input);
Path out = new Path(output);
FileSystem fs = FileSystem.get(conf);
if(fs.exists(in)){
if(fs.exists(out)){
//boolean參數(shù)是,是否遞歸刪除的意思
fs.delete(out, true);
}
SparseVectorsFromSequenceFiles svfsf = new SparseVectorsFromSequenceFiles();
String[] params = new String[]{"-i",input,"-o",output,"-lnorm","-nv","-wt","tfidf"};
ToolRunner.run(svfsf, params);
}
} catch (Exception e) {
// TODO Auto-generated catch block
e.printStackTrace();
System.out.println("序列化文件轉(zhuǎn)換成向量失??!");
System.out.println(2);
}
}
public static void makeModel(boolean completelyNB){
try {
Configuration conf = new Configuration();
conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));
String input = WORK_DIR+Path.SEPARATOR+"tennis-vectors"+Path.SEPARATOR+"tfidf-vectors";
String model = WORK_DIR+Path.SEPARATOR+"model";
String labelindex = WORK_DIR+Path.SEPARATOR+"labelindex";
Path in = new Path(input);
Path out = new Path(model);
Path label = new Path(labelindex);
FileSystem fs = FileSystem.get(conf);
if(fs.exists(in)){
if(fs.exists(out)){
//boolean參數(shù)是,是否遞歸刪除的意思
fs.delete(out, true);
}
if(fs.exists(label)){
//boolean參數(shù)是,是否遞歸刪除的意思
fs.delete(label, true);
}
TrainNaiveBayesJob tnbj = new TrainNaiveBayesJob();
String[] params =null;
if(completelyNB){
params = new String[]{"-i",input,"-el","-o",model,"-li",labelindex,"-ow","-c"};
}else{
params = new String[]{"-i",input,"-el","-o",model,"-li",labelindex,"-ow"};
}
ToolRunner.run(tnbj, params);
}
} catch (Exception e) {
// TODO Auto-generated catch block
e.printStackTrace();
System.out.println("生成訓(xùn)練模型失敗!");
System.exit(3);
}
}
}
package myTesting.bayes;
import java.io.IOException;
import java.util.HashMap;
import java.util.Map;
import org.apache.commons.lang.StringUtils;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.fs.PathFilter;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.mahout.classifier.naivebayes.BayesUtils;
import org.apache.mahout.classifier.naivebayes.NaiveBayesModel;
import org.apache.mahout.classifier.naivebayes.StandardNaiveBayesClassifier;
import org.apache.mahout.common.Pair;
import org.apache.mahout.common.iterator.sequencefile.PathType;
import org.apache.mahout.common.iterator.sequencefile.SequenceFileDirIterable;
import org.apache.mahout.math.RandomAccessSparseVector;
import org.apache.mahout.math.Vector;
import org.apache.mahout.math.Vector.Element;
import org.apache.mahout.vectorizer.TFIDF;
import com.google.common.collect.ConcurrentHashMultiset;
import com.google.common.collect.Multiset;
public class BayesCheckData {
private static StandardNaiveBayesClassifier classifier;
private static Map<String, Integer> dictionary;
private static Map<Integer, Long> documentFrequency;
private static Map<Integer, String> labelIndex;
public void init(Configuration conf){
try {
String modelPath = "/zhoujianfeng/playtennis/model";
String dictionaryPath = "/zhoujianfeng/playtennis/tennis-vectors/dictionary.file-0";
String documentFrequencyPath = "/zhoujianfeng/playtennis/tennis-vectors/df-count";
String labelIndexPath = "/zhoujianfeng/playtennis/labelindex";
dictionary = readDictionnary(conf, new Path(dictionaryPath));
documentFrequency = readDocumentFrequency(conf, new Path(documentFrequencyPath));
labelIndex = BayesUtils.readLabelIndex(conf, new Path(labelIndexPath));
NaiveBayesModel model = NaiveBayesModel.materialize(new Path(modelPath), conf);
classifier = new StandardNaiveBayesClassifier(model);
} catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace();
System.out.println("檢測數(shù)據(jù)構(gòu)造成vectors初始化時報錯。。。。");
System.exit(4);
}
}
/**
* 加載字典文件,Key: TermValue; Value:TermID
* @param conf
* @param dictionnaryDir
* @return
*/
private static Map<String, Integer> readDictionnary(Configuration conf, Path dictionnaryDir) {
Map<String, Integer> dictionnary = new HashMap<String, Integer>();
PathFilter filter = new PathFilter() {
@Override
public boolean accept(Path path) {
String name = path.getName();
return name.startsWith("dictionary.file");
}
};
for (Pair<Text, IntWritable> pair : new SequenceFileDirIterable<Text, IntWritable>(dictionnaryDir, PathType.LIST, filter, conf)) {
dictionnary.put(pair.getFirst().toString(), pair.getSecond().get());
}
return dictionnary;
}
/**
* 加載df-count目錄下TermDoc頻率文件,Key: TermID; Value:DocFreq
* @param conf
* @param dictionnaryDir
* @return
*/
private static Map<Integer, Long> readDocumentFrequency(Configuration conf, Path documentFrequencyDir) {
Map<Integer, Long> documentFrequency = new HashMap<Integer, Long>();
PathFilter filter = new PathFilter() {
@Override
public boolean accept(Path path) {
return path.getName().startsWith("part-r");
}
};
for (Pair<IntWritable, LongWritable> pair : new SequenceFileDirIterable<IntWritable, LongWritable>(documentFrequencyDir, PathType.LIST, filter, conf)) {
documentFrequency.put(pair.getFirst().get(), pair.getSecond().get());
}
return documentFrequency;
}
public static String getCheckResult(){
Configuration conf = new Configuration();
conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));
String classify = "NaN";
BayesCheckData cdv = new BayesCheckData();
cdv.init(conf);
System.out.println("init done...............");
Vector vector = new RandomAccessSparseVector(10000);
TFIDF tfidf = new TFIDF();
//sunny,hot,high,weak
Multiset<String> words = ConcurrentHashMultiset.create();
words.add("sunny",1);
words.add("hot",1);
words.add("high",1);
words.add("weak",1);
int documentCount = documentFrequency.get(-1).intValue(); // key=-1時表示總文檔數(shù)
for (Multiset.Entry<String> entry : words.entrySet()) {
String word = entry.getElement();
int count = entry.getCount();
Integer wordId = dictionary.get(word); // 需要從dictionary.file-0文件(tf-vector)下得到wordID,
if (StringUtils.isEmpty(wordId.toString())){
continue;
}
if (documentFrequency.get(wordId) == null){
continue;
}
Long freq = documentFrequency.get(wordId);
double tfIdfValue = tfidf.calculate(count, freq.intValue(), 1, documentCount);
vector.setQuick(wordId, tfIdfValue);
}
// 利用貝葉斯算法開始分類,并提取得分最好的分類label
Vector resultVector = classifier.classifyFull(vector);
double bestScore = -Double.MAX_VALUE;
int bestCategoryId = -1;
for(Element element: resultVector.all()) {
int categoryId = element.index();
double score = element.get();
System.out.println("categoryId:"+categoryId+" score:"+score);
if (score > bestScore) {
bestScore = score;
bestCategoryId = categoryId;
}
}
classify = labelIndex.get(bestCategoryId)+"(categoryId="+bestCategoryId+")";
return classify;
}
public static void printResult(){
System.out.println("檢測所屬類別是:"+getCheckResult());
}
}
1. 請介紹一下WebGIS的概念和作用,以及在實際應(yīng)用中的優(yōu)勢和挑戰(zhàn)。
WebGIS是一種基于Web技術(shù)的地理信息系統(tǒng),通過將地理數(shù)據(jù)和功能以可視化的方式呈現(xiàn)在Web瀏覽器中,實現(xiàn)地理空間數(shù)據(jù)的共享和分析。它可以用于地圖瀏覽、空間查詢、地理分析等多種應(yīng)用場景。WebGIS的優(yōu)勢包括易于訪問、跨平臺、實時更新、可定制性強等,但也面臨著數(shù)據(jù)安全性、性能優(yōu)化、用戶體驗等挑戰(zhàn)。
2. 請談?wù)勀赪ebGIS開發(fā)方面的經(jīng)驗和技能。
我在WebGIS開發(fā)方面有豐富的經(jīng)驗和技能。我熟悉常用的WebGIS開發(fā)框架和工具,如ArcGIS API for JavaScript、Leaflet、OpenLayers等。我能夠使用HTML、CSS和JavaScript等前端技術(shù)進行地圖展示和交互設(shè)計,并能夠使用后端技術(shù)如Python、Java等進行地理數(shù)據(jù)處理和分析。我還具備數(shù)據(jù)庫管理和地理空間數(shù)據(jù)建模的能力,能夠設(shè)計和優(yōu)化WebGIS系統(tǒng)的架構(gòu)。
3. 請描述一下您在以往項目中使用WebGIS解決的具體問題和取得的成果。
在以往的項目中,我使用WebGIS解決了許多具體問題并取得了顯著的成果。例如,在一次城市規(guī)劃項目中,我開發(fā)了一個基于WebGIS的交通流量分析系統(tǒng),幫助規(guī)劃師們評估不同交通方案的效果。另外,在一次環(huán)境監(jiān)測項目中,我使用WebGIS技術(shù)實現(xiàn)了實時的空氣質(zhì)量監(jiān)測和預(yù)警系統(tǒng),提供了準確的空氣質(zhì)量數(shù)據(jù)和可視化的分析結(jié)果,幫助政府和公眾做出相應(yīng)的決策。
4. 請談?wù)勀鷮ebGIS未來發(fā)展的看法和期望。
我認為WebGIS在未來會繼續(xù)發(fā)展壯大。隨著云計算、大數(shù)據(jù)和人工智能等技術(shù)的不斷進步,WebGIS將能夠處理更大規(guī)模的地理數(shù)據(jù)、提供更豐富的地理分析功能,并與其他領(lǐng)域的技術(shù)進行深度融合。我期望未來的WebGIS能夠更加智能化、個性化,為用戶提供更好的地理信息服務(wù),助力各行各業(yè)的決策和發(fā)展。
這塊您需要了解下stm32等單片機的基本編程和簡單的硬件設(shè)計,最好能夠了解模電和數(shù)電相關(guān)的知識更好,還有能夠會做操作系統(tǒng),簡單的有ucos,freeRTOS等等。最好能夠使用PCB畫圖軟件以及keil4等軟件。希望對您能夠有用。