1、審核單據并編制記賬憑證:審核各類原始單據,審核無誤后根據各種單據編制記賬憑證;
2、結賬并編制報表:月末結賬,按時編制各種會計報表,做到數字真實、計算準確、內容完整、說明清楚、報送及時;
3、檢查并監(jiān)督庫存材料領用等情況:負責檢查、核實庫存材料,對各種庫存材料的購入、領用情況進行監(jiān)督;
4、監(jiān)督財務運作并核對賬目:負責監(jiān)督公司財務運作情況,及時出納核對現(xiàn)金,銀行賬單、各類憑證、單據,做到賬款、票據數目清楚;
5、計算稅金以及填表交納:負責公司稅金的計算,填寫稅務申報表及交納工作;
6、核銷管理發(fā)票:負責發(fā)票的核銷與管理,認真保管發(fā)票,嚴禁丟失;
7、整理憑證并保管資料:月末整理裝訂憑證,安全且完整地保管財務資料及會計檔案;
8、完成其他工作:完成上級分派的其他相關工作任務;
9、協(xié)助稅務部門:工作協(xié)同與稅務部門的工作,加強學習,掌握政策;
10、核對賬目并抽查倉庫:月末與庫管員進行核對,做到賬實相符,并對倉庫進行不定期抽查。
財務會計可以通過參加相關考試來獲取證書,并證明具有相關知識和能力。其中比較常見的考試有注冊會計師考試和會計從業(yè)資格考試等。考試內容主要圍繞財務會計、管理會計、財務管理、稅法等方面展開。考試形式一般為選擇題和主觀題,需要考生具備相應的知識儲備、題目解讀和思考能力。通過財務會計考試可以提高自身的職場競爭力,有助于職業(yè)發(fā)展和晉升。
所謂傳統(tǒng)會計,是指以歷史成本作為資產計價依據的會計實務,由于它在西方國家沿用已久,所以稱為傳統(tǒng)會計。
概念
美國早期著名會計學家佩頓和利特爾頓早在1940年,為美國會計學會所編寫的一篇專著《公司會計準則介紹》曾對西方國家傳統(tǒng)會計實務所依據的理論,作了非常清晰的說明,直到目前,仍然被廣泛地引用。
特點
1、強調收益的計量。
2、強調利益的行為屬性。
3、強調成本歸屬概念。
4、強調成本流轉觀念。
換言之,傳統(tǒng)會計的特點為
1.它所履行的主要是對投資者的會計責任,特別是資產的經營職責,即投資的結果。
2.強調收益的計量,并依據以下原則計量收益:(1)收入確認的實現(xiàn)原則,即在銷售后確認收入;(2)按配比原則確認費用。
3.以歷史成本對資產計價。
4.強調成本歸屬和流轉觀念。即將固定資產的購入成本主觀地分配于各會計期,并將已耗用設備和原材料的原始成本歸屬于產品成本,傳統(tǒng)會計認為會計不是一個計價過程,而是一個歷史成本的分配或歸屬過程,它并不考慮已耗用資產的現(xiàn)時成本。
初級財務會計定義:做好發(fā)票,合同,協(xié)議整理簽字,審批,記好入賬憑證等。
高級財務會計具有高級會計師資格證書,具有會計工作的職能,更具備管理會計,審計工作的素質,能擔當公司財務總監(jiān)的重任,解決的問題是經濟事項的對外報告問題,是向企業(yè)外部投資者、債權人以及其他與企業(yè)有利害關系的人提供有關企業(yè)財務狀況、經營情況和經營成果的信息,以滿足他們的決策對財務會計信息的需求。
高級財務會計理論源于一般財務會計理論,它是對一般財務會計理論的發(fā)展和延伸…
財務會計
[詞典] [計] financial accounting;
[例句]財務會計和管理會計。
Financial Accounting and Management Accounting.
1、考試云題庫支持按知識點進行分類,支持多級樹狀子分類;支持批量修改、刪除、導出。支持可視化添加試題,支持Word、Excel、TXT模板批量導入試題。有單選題、多選題、不定項選擇題、填空題、判斷題、問答題六種基本題型,還可以變通設置復雜組合題型,如材料題、完型填空、閱讀理解、聽力、視頻等題型。
面試中被問到抗壓力的問題時,可以針對以下問題進行回答:
1. 你對壓力的看法是什么?你認為良好的壓力管理對于工作與生活的重要性是什么?
2. 你曾經遇到過最大的壓力是什么?你是如何處理的?取得了什么成果?
3. 你如何預防壓力的堆積?平時都有哪些方法舒緩壓力?
4. 你在工作中是如何處理緊急事件的?在緊急事件發(fā)生時,你又是如何平靜處理的?
5. 當你感到應對不了困難時,你是如何處理自己的情緒的?是否有過跟同事或領導尋求幫助的經驗?
以上問題的回答需要切實體現(xiàn)出應聘者的應對壓力的能力、態(tài)度和方法。需要注意的是,壓力是一種正常的工作與生活狀態(tài),壓力管理不是要消除壓力,而是要學會合理地面對與處理壓力,以達到更好的工作和生活效果。
應該是校醫(yī)的工作范疇,急救處理,傳染病知識和健康教育,除專業(yè)知識外還會問一些開放性的題目,好好準備下吧,祝你成功。
之前看了Mahout官方示例 20news 的調用實現(xiàn);于是想根據示例的流程實現(xiàn)其他例子。網上看到了一個關于天氣適不適合打羽毛球的例子。
訓練數據:
Day Outlook Temperature Humidity Wind PlayTennis
D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal Strong No
D7 Overcast Cool Normal Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes
D10 Rain Mild Normal Weak Yes
D11 Sunny Mild Normal Strong Yes
D12 Overcast Mild High Strong Yes
D13 Overcast Hot Normal Weak Yes
D14 Rain Mild High Strong No
檢測數據:
sunny,hot,high,weak
結果:
Yes=》 0.007039
No=》 0.027418
于是使用Java代碼調用Mahout的工具類實現(xiàn)分類。
基本思想:
1. 構造分類數據。
2. 使用Mahout工具類進行訓練,得到訓練模型。
3。將要檢測數據轉換成vector數據。
4. 分類器對vector數據進行分類。
接下來貼下我的代碼實現(xiàn)=》
1. 構造分類數據:
在hdfs主要創(chuàng)建一個文件夾路徑 /zhoujainfeng/playtennis/input 并將分類文件夾 no 和 yes 的數據傳到hdfs上面。
數據文件格式,如D1文件內容: Sunny Hot High Weak
2. 使用Mahout工具類進行訓練,得到訓練模型。
3。將要檢測數據轉換成vector數據。
4. 分類器對vector數據進行分類。
這三步,代碼我就一次全貼出來;主要是兩個類 PlayTennis1 和 BayesCheckData = =》
package myTesting.bayes;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.util.ToolRunner;
import org.apache.mahout.classifier.naivebayes.training.TrainNaiveBayesJob;
import org.apache.mahout.text.SequenceFilesFromDirectory;
import org.apache.mahout.vectorizer.SparseVectorsFromSequenceFiles;
public class PlayTennis1 {
private static final String WORK_DIR = "hdfs://192.168.9.72:9000/zhoujianfeng/playtennis";
/*
* 測試代碼
*/
public static void main(String[] args) {
//將訓練數據轉換成 vector數據
makeTrainVector();
//產生訓練模型
makeModel(false);
//測試檢測數據
BayesCheckData.printResult();
}
public static void makeCheckVector(){
//將測試數據轉換成序列化文件
try {
Configuration conf = new Configuration();
conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));
String input = WORK_DIR+Path.SEPARATOR+"testinput";
String output = WORK_DIR+Path.SEPARATOR+"tennis-test-seq";
Path in = new Path(input);
Path out = new Path(output);
FileSystem fs = FileSystem.get(conf);
if(fs.exists(in)){
if(fs.exists(out)){
//boolean參數是,是否遞歸刪除的意思
fs.delete(out, true);
}
SequenceFilesFromDirectory sffd = new SequenceFilesFromDirectory();
String[] params = new String[]{"-i",input,"-o",output,"-ow"};
ToolRunner.run(sffd, params);
}
} catch (Exception e) {
// TODO Auto-generated catch block
e.printStackTrace();
System.out.println("文件序列化失敗!");
System.exit(1);
}
//將序列化文件轉換成向量文件
try {
Configuration conf = new Configuration();
conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));
String input = WORK_DIR+Path.SEPARATOR+"tennis-test-seq";
String output = WORK_DIR+Path.SEPARATOR+"tennis-test-vectors";
Path in = new Path(input);
Path out = new Path(output);
FileSystem fs = FileSystem.get(conf);
if(fs.exists(in)){
if(fs.exists(out)){
//boolean參數是,是否遞歸刪除的意思
fs.delete(out, true);
}
SparseVectorsFromSequenceFiles svfsf = new SparseVectorsFromSequenceFiles();
String[] params = new String[]{"-i",input,"-o",output,"-lnorm","-nv","-wt","tfidf"};
ToolRunner.run(svfsf, params);
}
} catch (Exception e) {
// TODO Auto-generated catch block
e.printStackTrace();
System.out.println("序列化文件轉換成向量失敗!");
System.out.println(2);
}
}
public static void makeTrainVector(){
//將測試數據轉換成序列化文件
try {
Configuration conf = new Configuration();
conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));
String input = WORK_DIR+Path.SEPARATOR+"input";
String output = WORK_DIR+Path.SEPARATOR+"tennis-seq";
Path in = new Path(input);
Path out = new Path(output);
FileSystem fs = FileSystem.get(conf);
if(fs.exists(in)){
if(fs.exists(out)){
//boolean參數是,是否遞歸刪除的意思
fs.delete(out, true);
}
SequenceFilesFromDirectory sffd = new SequenceFilesFromDirectory();
String[] params = new String[]{"-i",input,"-o",output,"-ow"};
ToolRunner.run(sffd, params);
}
} catch (Exception e) {
// TODO Auto-generated catch block
e.printStackTrace();
System.out.println("文件序列化失敗!");
System.exit(1);
}
//將序列化文件轉換成向量文件
try {
Configuration conf = new Configuration();
conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));
String input = WORK_DIR+Path.SEPARATOR+"tennis-seq";
String output = WORK_DIR+Path.SEPARATOR+"tennis-vectors";
Path in = new Path(input);
Path out = new Path(output);
FileSystem fs = FileSystem.get(conf);
if(fs.exists(in)){
if(fs.exists(out)){
//boolean參數是,是否遞歸刪除的意思
fs.delete(out, true);
}
SparseVectorsFromSequenceFiles svfsf = new SparseVectorsFromSequenceFiles();
String[] params = new String[]{"-i",input,"-o",output,"-lnorm","-nv","-wt","tfidf"};
ToolRunner.run(svfsf, params);
}
} catch (Exception e) {
// TODO Auto-generated catch block
e.printStackTrace();
System.out.println("序列化文件轉換成向量失敗!");
System.out.println(2);
}
}
public static void makeModel(boolean completelyNB){
try {
Configuration conf = new Configuration();
conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));
String input = WORK_DIR+Path.SEPARATOR+"tennis-vectors"+Path.SEPARATOR+"tfidf-vectors";
String model = WORK_DIR+Path.SEPARATOR+"model";
String labelindex = WORK_DIR+Path.SEPARATOR+"labelindex";
Path in = new Path(input);
Path out = new Path(model);
Path label = new Path(labelindex);
FileSystem fs = FileSystem.get(conf);
if(fs.exists(in)){
if(fs.exists(out)){
//boolean參數是,是否遞歸刪除的意思
fs.delete(out, true);
}
if(fs.exists(label)){
//boolean參數是,是否遞歸刪除的意思
fs.delete(label, true);
}
TrainNaiveBayesJob tnbj = new TrainNaiveBayesJob();
String[] params =null;
if(completelyNB){
params = new String[]{"-i",input,"-el","-o",model,"-li",labelindex,"-ow","-c"};
}else{
params = new String[]{"-i",input,"-el","-o",model,"-li",labelindex,"-ow"};
}
ToolRunner.run(tnbj, params);
}
} catch (Exception e) {
// TODO Auto-generated catch block
e.printStackTrace();
System.out.println("生成訓練模型失敗!");
System.exit(3);
}
}
}
package myTesting.bayes;
import java.io.IOException;
import java.util.HashMap;
import java.util.Map;
import org.apache.commons.lang.StringUtils;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.fs.PathFilter;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.mahout.classifier.naivebayes.BayesUtils;
import org.apache.mahout.classifier.naivebayes.NaiveBayesModel;
import org.apache.mahout.classifier.naivebayes.StandardNaiveBayesClassifier;
import org.apache.mahout.common.Pair;
import org.apache.mahout.common.iterator.sequencefile.PathType;
import org.apache.mahout.common.iterator.sequencefile.SequenceFileDirIterable;
import org.apache.mahout.math.RandomAccessSparseVector;
import org.apache.mahout.math.Vector;
import org.apache.mahout.math.Vector.Element;
import org.apache.mahout.vectorizer.TFIDF;
import com.google.common.collect.ConcurrentHashMultiset;
import com.google.common.collect.Multiset;
public class BayesCheckData {
private static StandardNaiveBayesClassifier classifier;
private static Map<String, Integer> dictionary;
private static Map<Integer, Long> documentFrequency;
private static Map<Integer, String> labelIndex;
public void init(Configuration conf){
try {
String modelPath = "/zhoujianfeng/playtennis/model";
String dictionaryPath = "/zhoujianfeng/playtennis/tennis-vectors/dictionary.file-0";
String documentFrequencyPath = "/zhoujianfeng/playtennis/tennis-vectors/df-count";
String labelIndexPath = "/zhoujianfeng/playtennis/labelindex";
dictionary = readDictionnary(conf, new Path(dictionaryPath));
documentFrequency = readDocumentFrequency(conf, new Path(documentFrequencyPath));
labelIndex = BayesUtils.readLabelIndex(conf, new Path(labelIndexPath));
NaiveBayesModel model = NaiveBayesModel.materialize(new Path(modelPath), conf);
classifier = new StandardNaiveBayesClassifier(model);
} catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace();
System.out.println("檢測數據構造成vectors初始化時報錯。。。。");
System.exit(4);
}
}
/**
* 加載字典文件,Key: TermValue; Value:TermID
* @param conf
* @param dictionnaryDir
* @return
*/
private static Map<String, Integer> readDictionnary(Configuration conf, Path dictionnaryDir) {
Map<String, Integer> dictionnary = new HashMap<String, Integer>();
PathFilter filter = new PathFilter() {
@Override
public boolean accept(Path path) {
String name = path.getName();
return name.startsWith("dictionary.file");
}
};
for (Pair<Text, IntWritable> pair : new SequenceFileDirIterable<Text, IntWritable>(dictionnaryDir, PathType.LIST, filter, conf)) {
dictionnary.put(pair.getFirst().toString(), pair.getSecond().get());
}
return dictionnary;
}
/**
* 加載df-count目錄下TermDoc頻率文件,Key: TermID; Value:DocFreq
* @param conf
* @param dictionnaryDir
* @return
*/
private static Map<Integer, Long> readDocumentFrequency(Configuration conf, Path documentFrequencyDir) {
Map<Integer, Long> documentFrequency = new HashMap<Integer, Long>();
PathFilter filter = new PathFilter() {
@Override
public boolean accept(Path path) {
return path.getName().startsWith("part-r");
}
};
for (Pair<IntWritable, LongWritable> pair : new SequenceFileDirIterable<IntWritable, LongWritable>(documentFrequencyDir, PathType.LIST, filter, conf)) {
documentFrequency.put(pair.getFirst().get(), pair.getSecond().get());
}
return documentFrequency;
}
public static String getCheckResult(){
Configuration conf = new Configuration();
conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));
String classify = "NaN";
BayesCheckData cdv = new BayesCheckData();
cdv.init(conf);
System.out.println("init done...............");
Vector vector = new RandomAccessSparseVector(10000);
TFIDF tfidf = new TFIDF();
//sunny,hot,high,weak
Multiset<String> words = ConcurrentHashMultiset.create();
words.add("sunny",1);
words.add("hot",1);
words.add("high",1);
words.add("weak",1);
int documentCount = documentFrequency.get(-1).intValue(); // key=-1時表示總文檔數
for (Multiset.Entry<String> entry : words.entrySet()) {
String word = entry.getElement();
int count = entry.getCount();
Integer wordId = dictionary.get(word); // 需要從dictionary.file-0文件(tf-vector)下得到wordID,
if (StringUtils.isEmpty(wordId.toString())){
continue;
}
if (documentFrequency.get(wordId) == null){
continue;
}
Long freq = documentFrequency.get(wordId);
double tfIdfValue = tfidf.calculate(count, freq.intValue(), 1, documentCount);
vector.setQuick(wordId, tfIdfValue);
}
// 利用貝葉斯算法開始分類,并提取得分最好的分類label
Vector resultVector = classifier.classifyFull(vector);
double bestScore = -Double.MAX_VALUE;
int bestCategoryId = -1;
for(Element element: resultVector.all()) {
int categoryId = element.index();
double score = element.get();
System.out.println("categoryId:"+categoryId+" score:"+score);
if (score > bestScore) {
bestScore = score;
bestCategoryId = categoryId;
}
}
classify = labelIndex.get(bestCategoryId)+"(categoryId="+bestCategoryId+")";
return classify;
}
public static void printResult(){
System.out.println("檢測所屬類別是:"+getCheckResult());
}
}