近年來,事業(yè)單位成為許多求職者的熱門選擇。事業(yè)單位擁有穩(wěn)定的工作環(huán)境和豐厚的福利待遇,因此備受青睞。然而,事業(yè)單位的面試過程常常充滿挑戰(zhàn),需要應聘者具備廣泛的知識和扎實的能力。下面是2018年事業(yè)單位面試的一些常見題目,供大家參考。
這是一個非常基礎(chǔ)的問題,但也是面試官了解應聘者對事業(yè)單位的理解程度的關(guān)鍵。應聘者應該重點介紹事業(yè)單位的定義、性質(zhì)和目標,以及事業(yè)單位與其他類型組織的區(qū)別。此外,還可以提及一些知名的事業(yè)單位以及他們的職責和職業(yè)發(fā)展路徑。
這個問題考察應聘者對所申請職位的理解和興趣程度。應聘者需要闡述自己對該職位的認識和了解,并且提供相關(guān)的證據(jù),如工作經(jīng)歷、培訓經(jīng)歷或個人成就,來證明自己具備相關(guān)的能力和熱情。
此問題旨在了解應聘者對自身職業(yè)生涯的規(guī)劃和目標。應聘者需要結(jié)合所申請職位的特點,展示自己的職業(yè)規(guī)劃和未來發(fā)展方向,并說明為什么選擇該職位能夠幫助自己實現(xiàn)目標。
這是一個考察應聘者適應能力和溝通能力的問題。應聘者需要展示自己的變通性和學習能力,說明自己可以根據(jù)實際情況靈活調(diào)整工作方式和溝通方式,以達到最佳效果。
這個問題考察應聘者的問題解決能力和工作經(jīng)驗。應聘者需要選擇一個具有代表性的難題,并詳細描述自己在解決問題過程中采取的策略和方法。同時,應聘者也可以反思并總結(jié)自己在問題解決過程中的收獲和成長。
團隊合作是事業(yè)單位工作中的重要組成部分。應聘者需要明確表達對團隊合作的理解,并提供一個具體的例子,闡述自己如何在團隊中發(fā)揮作用、解決問題,并幫助團隊取得成功。
公務員廉政建設(shè)是事業(yè)單位的重要內(nèi)容之一。應聘者需要對公務員廉政建設(shè)有一定了解,并從自己的角度出發(fā),表達對廉政建設(shè)的認識、態(tài)度和看法,強調(diào)自己的廉政意識和對道德準則的遵守。
事業(yè)單位的工作強度較高,良好的工作與生活平衡是每個員工都需要關(guān)注的問題。應聘者需要說明自己對于工作與生活平衡的重視,并提供自己在實踐中采取的一些具體措施和方法。
此問題考察應聘者對于事業(yè)發(fā)展的規(guī)劃和對工作環(huán)境的期望。應聘者需要明確表達自己對于得到支持和幫助的期望,如培訓機會、職業(yè)晉升機會、專業(yè)指導等,并說明這些支持和幫助對于自己的職業(yè)發(fā)展至關(guān)重要。
希望以上的面試題目可以幫助大家更好地應對事業(yè)單位面試。在備戰(zhàn)面試的過程中,要保持自信和冷靜,結(jié)合個人的經(jīng)驗和實際情況,合理回答面試官的問題,并展示出自己的優(yōu)勢和潛力。祝愿每一位應聘者都能夠取得滿意的成績,順利進入心儀的事業(yè)單位!
2018年,貴州省特崗教師招聘面試題備受廣大教師應聘者關(guān)注。在這些面試題中,不僅考查了應聘者的專業(yè)知識和教學能力,還涉及了教育教學實踐、教育教學改革等方面的問題。本文將對2018年貴州特崗教師面試題進行解析,幫助應聘者更好地準備面試。
解析:這個問題旨在考察教師對學生個體差異的認識和對待方式。在回答時,應聘者可以強調(diào)不同學生有不同的學習能力、興趣愛好和學習風格,教師應根據(jù)學生的個體差異有針對性地展開教學工作,關(guān)注每個學生的進步和成長,做到因材施教。
解析:這個問題考察了教師在課堂教學中是否注重培養(yǎng)學生的創(chuàng)新思維能力。教師可通過設(shè)計富有創(chuàng)意的教學活動、引導學生提出新穎問題、鼓勵他們勇于嘗試和改進,在激發(fā)學生的創(chuàng)新潛能的同時,促進他們的思維發(fā)展和綜合能力的提升。
解析:這個問題考察了教師對課堂管理的重視程度和相關(guān)經(jīng)驗。在答題時,應聘者可以結(jié)合自身教學實踐經(jīng)驗,介紹自己的課堂管理理念和具體做法,如制定嚴謹?shù)恼n堂紀律,保持良好的師生關(guān)系,及時有效地處理突發(fā)事件等,確保教學秩序和教學效果。
面試是教師招聘過程中的重要環(huán)節(jié),借助面試題解析及備考,應聘者能夠更清晰地了解面試內(nèi)容和考察重點,有效提升應對面試的能力。希望本文對廣大教師應聘者在2018年貴州特崗教師面試中取得成功有所幫助。
之前看了Mahout官方示例 20news 的調(diào)用實現(xiàn);于是想根據(jù)示例的流程實現(xiàn)其他例子。網(wǎng)上看到了一個關(guān)于天氣適不適合打羽毛球的例子。
訓練數(shù)據(jù):
Day Outlook Temperature Humidity Wind PlayTennis
D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal Strong No
D7 Overcast Cool Normal Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes
D10 Rain Mild Normal Weak Yes
D11 Sunny Mild Normal Strong Yes
D12 Overcast Mild High Strong Yes
D13 Overcast Hot Normal Weak Yes
D14 Rain Mild High Strong No
檢測數(shù)據(jù):
sunny,hot,high,weak
結(jié)果:
Yes=》 0.007039
No=》 0.027418
于是使用Java代碼調(diào)用Mahout的工具類實現(xiàn)分類。
基本思想:
1. 構(gòu)造分類數(shù)據(jù)。
2. 使用Mahout工具類進行訓練,得到訓練模型。
3。將要檢測數(shù)據(jù)轉(zhuǎn)換成vector數(shù)據(jù)。
4. 分類器對vector數(shù)據(jù)進行分類。
接下來貼下我的代碼實現(xiàn)=》
1. 構(gòu)造分類數(shù)據(jù):
在hdfs主要創(chuàng)建一個文件夾路徑 /zhoujainfeng/playtennis/input 并將分類文件夾 no 和 yes 的數(shù)據(jù)傳到hdfs上面。
數(shù)據(jù)文件格式,如D1文件內(nèi)容: Sunny Hot High Weak
2. 使用Mahout工具類進行訓練,得到訓練模型。
3。將要檢測數(shù)據(jù)轉(zhuǎn)換成vector數(shù)據(jù)。
4. 分類器對vector數(shù)據(jù)進行分類。
這三步,代碼我就一次全貼出來;主要是兩個類 PlayTennis1 和 BayesCheckData = =》
package myTesting.bayes;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.util.ToolRunner;
import org.apache.mahout.classifier.naivebayes.training.TrainNaiveBayesJob;
import org.apache.mahout.text.SequenceFilesFromDirectory;
import org.apache.mahout.vectorizer.SparseVectorsFromSequenceFiles;
public class PlayTennis1 {
private static final String WORK_DIR = "hdfs://192.168.9.72:9000/zhoujianfeng/playtennis";
/*
* 測試代碼
*/
public static void main(String[] args) {
//將訓練數(shù)據(jù)轉(zhuǎn)換成 vector數(shù)據(jù)
makeTrainVector();
//產(chǎn)生訓練模型
makeModel(false);
//測試檢測數(shù)據(jù)
BayesCheckData.printResult();
}
public static void makeCheckVector(){
//將測試數(shù)據(jù)轉(zhuǎn)換成序列化文件
try {
Configuration conf = new Configuration();
conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));
String input = WORK_DIR+Path.SEPARATOR+"testinput";
String output = WORK_DIR+Path.SEPARATOR+"tennis-test-seq";
Path in = new Path(input);
Path out = new Path(output);
FileSystem fs = FileSystem.get(conf);
if(fs.exists(in)){
if(fs.exists(out)){
//boolean參數(shù)是,是否遞歸刪除的意思
fs.delete(out, true);
}
SequenceFilesFromDirectory sffd = new SequenceFilesFromDirectory();
String[] params = new String[]{"-i",input,"-o",output,"-ow"};
ToolRunner.run(sffd, params);
}
} catch (Exception e) {
// TODO Auto-generated catch block
e.printStackTrace();
System.out.println("文件序列化失敗!");
System.exit(1);
}
//將序列化文件轉(zhuǎn)換成向量文件
try {
Configuration conf = new Configuration();
conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));
String input = WORK_DIR+Path.SEPARATOR+"tennis-test-seq";
String output = WORK_DIR+Path.SEPARATOR+"tennis-test-vectors";
Path in = new Path(input);
Path out = new Path(output);
FileSystem fs = FileSystem.get(conf);
if(fs.exists(in)){
if(fs.exists(out)){
//boolean參數(shù)是,是否遞歸刪除的意思
fs.delete(out, true);
}
SparseVectorsFromSequenceFiles svfsf = new SparseVectorsFromSequenceFiles();
String[] params = new String[]{"-i",input,"-o",output,"-lnorm","-nv","-wt","tfidf"};
ToolRunner.run(svfsf, params);
}
} catch (Exception e) {
// TODO Auto-generated catch block
e.printStackTrace();
System.out.println("序列化文件轉(zhuǎn)換成向量失敗!");
System.out.println(2);
}
}
public static void makeTrainVector(){
//將測試數(shù)據(jù)轉(zhuǎn)換成序列化文件
try {
Configuration conf = new Configuration();
conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));
String input = WORK_DIR+Path.SEPARATOR+"input";
String output = WORK_DIR+Path.SEPARATOR+"tennis-seq";
Path in = new Path(input);
Path out = new Path(output);
FileSystem fs = FileSystem.get(conf);
if(fs.exists(in)){
if(fs.exists(out)){
//boolean參數(shù)是,是否遞歸刪除的意思
fs.delete(out, true);
}
SequenceFilesFromDirectory sffd = new SequenceFilesFromDirectory();
String[] params = new String[]{"-i",input,"-o",output,"-ow"};
ToolRunner.run(sffd, params);
}
} catch (Exception e) {
// TODO Auto-generated catch block
e.printStackTrace();
System.out.println("文件序列化失敗!");
System.exit(1);
}
//將序列化文件轉(zhuǎn)換成向量文件
try {
Configuration conf = new Configuration();
conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));
String input = WORK_DIR+Path.SEPARATOR+"tennis-seq";
String output = WORK_DIR+Path.SEPARATOR+"tennis-vectors";
Path in = new Path(input);
Path out = new Path(output);
FileSystem fs = FileSystem.get(conf);
if(fs.exists(in)){
if(fs.exists(out)){
//boolean參數(shù)是,是否遞歸刪除的意思
fs.delete(out, true);
}
SparseVectorsFromSequenceFiles svfsf = new SparseVectorsFromSequenceFiles();
String[] params = new String[]{"-i",input,"-o",output,"-lnorm","-nv","-wt","tfidf"};
ToolRunner.run(svfsf, params);
}
} catch (Exception e) {
// TODO Auto-generated catch block
e.printStackTrace();
System.out.println("序列化文件轉(zhuǎn)換成向量失敗!");
System.out.println(2);
}
}
public static void makeModel(boolean completelyNB){
try {
Configuration conf = new Configuration();
conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));
String input = WORK_DIR+Path.SEPARATOR+"tennis-vectors"+Path.SEPARATOR+"tfidf-vectors";
String model = WORK_DIR+Path.SEPARATOR+"model";
String labelindex = WORK_DIR+Path.SEPARATOR+"labelindex";
Path in = new Path(input);
Path out = new Path(model);
Path label = new Path(labelindex);
FileSystem fs = FileSystem.get(conf);
if(fs.exists(in)){
if(fs.exists(out)){
//boolean參數(shù)是,是否遞歸刪除的意思
fs.delete(out, true);
}
if(fs.exists(label)){
//boolean參數(shù)是,是否遞歸刪除的意思
fs.delete(label, true);
}
TrainNaiveBayesJob tnbj = new TrainNaiveBayesJob();
String[] params =null;
if(completelyNB){
params = new String[]{"-i",input,"-el","-o",model,"-li",labelindex,"-ow","-c"};
}else{
params = new String[]{"-i",input,"-el","-o",model,"-li",labelindex,"-ow"};
}
ToolRunner.run(tnbj, params);
}
} catch (Exception e) {
// TODO Auto-generated catch block
e.printStackTrace();
System.out.println("生成訓練模型失敗!");
System.exit(3);
}
}
}
package myTesting.bayes;
import java.io.IOException;
import java.util.HashMap;
import java.util.Map;
import org.apache.commons.lang.StringUtils;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.fs.PathFilter;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.mahout.classifier.naivebayes.BayesUtils;
import org.apache.mahout.classifier.naivebayes.NaiveBayesModel;
import org.apache.mahout.classifier.naivebayes.StandardNaiveBayesClassifier;
import org.apache.mahout.common.Pair;
import org.apache.mahout.common.iterator.sequencefile.PathType;
import org.apache.mahout.common.iterator.sequencefile.SequenceFileDirIterable;
import org.apache.mahout.math.RandomAccessSparseVector;
import org.apache.mahout.math.Vector;
import org.apache.mahout.math.Vector.Element;
import org.apache.mahout.vectorizer.TFIDF;
import com.google.common.collect.ConcurrentHashMultiset;
import com.google.common.collect.Multiset;
public class BayesCheckData {
private static StandardNaiveBayesClassifier classifier;
private static Map<String, Integer> dictionary;
private static Map<Integer, Long> documentFrequency;
private static Map<Integer, String> labelIndex;
public void init(Configuration conf){
try {
String modelPath = "/zhoujianfeng/playtennis/model";
String dictionaryPath = "/zhoujianfeng/playtennis/tennis-vectors/dictionary.file-0";
String documentFrequencyPath = "/zhoujianfeng/playtennis/tennis-vectors/df-count";
String labelIndexPath = "/zhoujianfeng/playtennis/labelindex";
dictionary = readDictionnary(conf, new Path(dictionaryPath));
documentFrequency = readDocumentFrequency(conf, new Path(documentFrequencyPath));
labelIndex = BayesUtils.readLabelIndex(conf, new Path(labelIndexPath));
NaiveBayesModel model = NaiveBayesModel.materialize(new Path(modelPath), conf);
classifier = new StandardNaiveBayesClassifier(model);
} catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace();
System.out.println("檢測數(shù)據(jù)構(gòu)造成vectors初始化時報錯。。。。");
System.exit(4);
}
}
/**
* 加載字典文件,Key: TermValue; Value:TermID
* @param conf
* @param dictionnaryDir
* @return
*/
private static Map<String, Integer> readDictionnary(Configuration conf, Path dictionnaryDir) {
Map<String, Integer> dictionnary = new HashMap<String, Integer>();
PathFilter filter = new PathFilter() {
@Override
public boolean accept(Path path) {
String name = path.getName();
return name.startsWith("dictionary.file");
}
};
for (Pair<Text, IntWritable> pair : new SequenceFileDirIterable<Text, IntWritable>(dictionnaryDir, PathType.LIST, filter, conf)) {
dictionnary.put(pair.getFirst().toString(), pair.getSecond().get());
}
return dictionnary;
}
/**
* 加載df-count目錄下TermDoc頻率文件,Key: TermID; Value:DocFreq
* @param conf
* @param dictionnaryDir
* @return
*/
private static Map<Integer, Long> readDocumentFrequency(Configuration conf, Path documentFrequencyDir) {
Map<Integer, Long> documentFrequency = new HashMap<Integer, Long>();
PathFilter filter = new PathFilter() {
@Override
public boolean accept(Path path) {
return path.getName().startsWith("part-r");
}
};
for (Pair<IntWritable, LongWritable> pair : new SequenceFileDirIterable<IntWritable, LongWritable>(documentFrequencyDir, PathType.LIST, filter, conf)) {
documentFrequency.put(pair.getFirst().get(), pair.getSecond().get());
}
return documentFrequency;
}
public static String getCheckResult(){
Configuration conf = new Configuration();
conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));
String classify = "NaN";
BayesCheckData cdv = new BayesCheckData();
cdv.init(conf);
System.out.println("init done...............");
Vector vector = new RandomAccessSparseVector(10000);
TFIDF tfidf = new TFIDF();
//sunny,hot,high,weak
Multiset<String> words = ConcurrentHashMultiset.create();
words.add("sunny",1);
words.add("hot",1);
words.add("high",1);
words.add("weak",1);
int documentCount = documentFrequency.get(-1).intValue(); // key=-1時表示總文檔數(shù)
for (Multiset.Entry<String> entry : words.entrySet()) {
String word = entry.getElement();
int count = entry.getCount();
Integer wordId = dictionary.get(word); // 需要從dictionary.file-0文件(tf-vector)下得到wordID,
if (StringUtils.isEmpty(wordId.toString())){
continue;
}
if (documentFrequency.get(wordId) == null){
continue;
}
Long freq = documentFrequency.get(wordId);
double tfIdfValue = tfidf.calculate(count, freq.intValue(), 1, documentCount);
vector.setQuick(wordId, tfIdfValue);
}
// 利用貝葉斯算法開始分類,并提取得分最好的分類label
Vector resultVector = classifier.classifyFull(vector);
double bestScore = -Double.MAX_VALUE;
int bestCategoryId = -1;
for(Element element: resultVector.all()) {
int categoryId = element.index();
double score = element.get();
System.out.println("categoryId:"+categoryId+" score:"+score);
if (score > bestScore) {
bestScore = score;
bestCategoryId = categoryId;
}
}
classify = labelIndex.get(bestCategoryId)+"(categoryId="+bestCategoryId+")";
return classify;
}
public static void printResult(){
System.out.println("檢測所屬類別是:"+getCheckResult());
}
}
1. 請介紹一下WebGIS的概念和作用,以及在實際應用中的優(yōu)勢和挑戰(zhàn)。
WebGIS是一種基于Web技術(shù)的地理信息系統(tǒng),通過將地理數(shù)據(jù)和功能以可視化的方式呈現(xiàn)在Web瀏覽器中,實現(xiàn)地理空間數(shù)據(jù)的共享和分析。它可以用于地圖瀏覽、空間查詢、地理分析等多種應用場景。WebGIS的優(yōu)勢包括易于訪問、跨平臺、實時更新、可定制性強等,但也面臨著數(shù)據(jù)安全性、性能優(yōu)化、用戶體驗等挑戰(zhàn)。
2. 請談談您在WebGIS開發(fā)方面的經(jīng)驗和技能。
我在WebGIS開發(fā)方面有豐富的經(jīng)驗和技能。我熟悉常用的WebGIS開發(fā)框架和工具,如ArcGIS API for JavaScript、Leaflet、OpenLayers等。我能夠使用HTML、CSS和JavaScript等前端技術(shù)進行地圖展示和交互設(shè)計,并能夠使用后端技術(shù)如Python、Java等進行地理數(shù)據(jù)處理和分析。我還具備數(shù)據(jù)庫管理和地理空間數(shù)據(jù)建模的能力,能夠設(shè)計和優(yōu)化WebGIS系統(tǒng)的架構(gòu)。
3. 請描述一下您在以往項目中使用WebGIS解決的具體問題和取得的成果。
在以往的項目中,我使用WebGIS解決了許多具體問題并取得了顯著的成果。例如,在一次城市規(guī)劃項目中,我開發(fā)了一個基于WebGIS的交通流量分析系統(tǒng),幫助規(guī)劃師們評估不同交通方案的效果。另外,在一次環(huán)境監(jiān)測項目中,我使用WebGIS技術(shù)實現(xiàn)了實時的空氣質(zhì)量監(jiān)測和預警系統(tǒng),提供了準確的空氣質(zhì)量數(shù)據(jù)和可視化的分析結(jié)果,幫助政府和公眾做出相應的決策。
4. 請談談您對WebGIS未來發(fā)展的看法和期望。
我認為WebGIS在未來會繼續(xù)發(fā)展壯大。隨著云計算、大數(shù)據(jù)和人工智能等技術(shù)的不斷進步,WebGIS將能夠處理更大規(guī)模的地理數(shù)據(jù)、提供更豐富的地理分析功能,并與其他領(lǐng)域的技術(shù)進行深度融合。我期望未來的WebGIS能夠更加智能化、個性化,為用戶提供更好的地理信息服務,助力各行各業(yè)的決策和發(fā)展。
這塊您需要了解下stm32等單片機的基本編程和簡單的硬件設(shè)計,最好能夠了解模電和數(shù)電相關(guān)的知識更好,還有能夠會做操作系統(tǒng),簡單的有ucos,freeRTOS等等。最好能夠使用PCB畫圖軟件以及keil4等軟件。希望對您能夠有用。
1.負責區(qū)域大客戶/行業(yè)客戶管理系統(tǒng)銷售拓展工作,并完成銷售流程;
2.維護關(guān)鍵客戶關(guān)系,與客戶決策者保持良好的溝通;
3.管理并帶領(lǐng)團隊完成完成年度銷售任務。
你好,面試題類型有很多,以下是一些常見的類型:
1. 技術(shù)面試題:考察候選人技術(shù)能力和經(jīng)驗。
2. 行為面試題:考察候選人在過去的工作或生活中的行為表現(xiàn),以預測其未來的表現(xiàn)。
3. 情境面試題:考察候選人在未知情境下的決策能力和解決問題的能力。
4. 案例面試題:考察候選人解決實際問題的能力,模擬真實工作場景。
5. 邏輯推理題:考察候選人的邏輯思維能力和分析能力。
6. 開放性面試題:考察候選人的個性、價值觀以及溝通能力。
7. 挑戰(zhàn)性面試題:考察候選人的應變能力和創(chuàng)造力,通常是一些非常具有挑戰(zhàn)性的問題。
需要具體分析 因為cocoscreator是一款游戲引擎,面試時的問題會涉及到不同的方面,如開發(fā)經(jīng)驗、游戲設(shè)計、圖形學等等,具體要求也會因公司或崗位而異,所以需要根據(jù)實際情況進行具體分析。 如果是針對開發(fā)經(jīng)驗的問題,可能會考察候選人是否熟悉cocoscreator常用API,是否能夠獨立開發(fā)小型游戲等等;如果是針對游戲設(shè)計的問題,則需要考察候選人對游戲玩法、關(guān)卡設(shè)計等等方面的理解和能力。因此,需要具體分析才能得出準確的回答。
以下是一些可能出現(xiàn)在MyCat面試中的問題:
1. 什么是MyCat?MyCat是一個開源的分布式數(shù)據(jù)庫中間件,它可以將多個MySQL數(shù)據(jù)庫組合成一個邏輯上的數(shù)據(jù)庫集群,提供高可用性、高性能、易擴展等特性。
2. MyCat的優(yōu)勢是什么?MyCat具有以下優(yōu)勢:支持讀寫分離、支持分庫分表、支持自動切換故障節(jié)點、支持SQL解析和路由、支持數(shù)據(jù)分片等。
3. MyCat的架構(gòu)是怎樣的?MyCat的架構(gòu)包括三個層次:客戶端層、中間件層和數(shù)據(jù)存儲層。客戶端層負責接收和處理客戶端請求,中間件層負責SQL解析和路由,數(shù)據(jù)存儲層負責實際的數(shù)據(jù)存儲和查詢。
4. MyCat支持哪些數(shù)據(jù)庫?MyCat目前支持MySQL和MariaDB數(shù)據(jù)庫。
5. MyCat如何實現(xiàn)讀寫分離?MyCat通過將讀請求和寫請求分別路由到不同的MySQL節(jié)點上實現(xiàn)讀寫分離。讀請求可以路由到多個只讀節(jié)點上,從而提高查詢性能。
6. MyCat如何實現(xiàn)分庫分表?MyCat通過對SQL進行解析和路由,將數(shù)據(jù)按照一定規(guī)則劃分到不同的數(shù)據(jù)庫或表中,從而實現(xiàn)分庫分表。
7. MyCat如何保證數(shù)據(jù)一致性?MyCat通過在多個MySQL節(jié)點之間同步數(shù)據(jù),保證數(shù)據(jù)的一致性。同時,MyCat還支持自動切換故障節(jié)點,從而保證系統(tǒng)的高可用性。
8. MyCat的部署方式有哪些?MyCat可以部署在單機上,也可以部署在多臺服務器上實現(xiàn)分布式部署。
謝邀。我先跟你說一個實際的工作例子,再說怎么答題,姑且稱為為一碗水的故事。
某縣xx局的張副局幫扶的貧困戶位于100公里以外的偏遠小鄉(xiāng)村,該貧困戶一戶7人,年邁的爺爺奶奶,戶主五十多歲,三個正在讀書的孩子。張副局每次駕車到該村村委后,再乘坐摩托車到底該貧困戶家中,送點慰問品、聊聊家常、看看政策落實,填寫幫扶手冊。但每次張副局都會自帶一瓶礦泉水入戶,每當老人家熱情的招呼:領(lǐng)導遠道而來,喝碗水吧。張副局總是擺擺手說道:老人家,我不渴或者我這有水,然后過一會拿起礦泉水就喝。看著那只發(fā)黃發(fā)黑的水壺,滿是泥垢的雙手,油膩的碗,作為城里長大的張副局,怎么可能會喝。2019年該戶各項指標達標,但在脫貧的事情上老人家一直不愿配合。年底的一次入戶時,張副局身體不適,又恰好車上的礦泉水用完,剛到貧困戶家里時,老人家一如既往地招呼,張副局推辭后,饑渴難耐,還是端起碗來,喝了一口,山泉水口感還是可以的。當天張副局陸續(xù)喝了三碗水,老人家最后說道:既然領(lǐng)導不嫌棄咱們,那我也聽領(lǐng)導的,你說怎么辦就怎么辦吧。瞬間,張副局恍然大悟,原來,不喝他的一碗水,他就覺得你是嫌棄他們臟,嫌棄他這個與土打交道老實人。人人都渴望被平等對待,就像費洛伊德一樣,平等才能創(chuàng)造更多的可能。當然,他們的環(huán)境也的確差一些。張副局往后每次入戶除了拉家常外就是幫他們一起打掃衛(wèi)生,教會他們各類常見的健康知識。
再回到題目上來,首先作為一名幫扶干部,要與貧困戶建立起平等和諧的幫扶結(jié)對關(guān)系,入戶幫扶過程中,貧困戶拿了椅子讓我坐,證明貧困戶還是比較熱情、比較配合工作的。對于椅子臟,我首先會接過椅子,并向貧困戶表示感謝。順其自然的用手拍拍椅子,然后把椅子靠近貧困戶的地方坐下來,一起拉家常,商量扶貧工作。
其次是貧困戶的椅子臟,說明了他的衛(wèi)生觀念不夠強。這就需要我們加強向他宣傳衛(wèi)生健康知識,抽時間共同打掃衛(wèi)生。
再次就是貧困戶他家中可能存在家具比較緊缺情況,我們就要積極發(fā)揮后盾單位作用,幫他們增加收入,添置家具。
最后就是我們在工作中,要妥善處理好每個工作細節(jié),一點一滴做起,扎實地做好脫貧攻堅工作,確保奔小康路上一個都不少!